在某次测验中,有6位同学的平均成绩为75分,用表示编号为的同学所得成绩,且前5位同学的成绩如下:
(1)求第6位同学的成绩,及这6位同学成绩的标准差;(2)从前5位同学中,随机地选2位同学,求恰有1位同学的成绩在区间(68,75)中的概率.
在中,已知内角A、B、C所对的边分别为a、b、c, 向量,,且 (I)求锐角B的大小; (II)如果,求的面积的最大值。
已知等差数列的前n项和为,且;等比数列满足: (1) 求数列和的通项公式 (2)记求数列的前n项和为.
设函数 (1)求的最小正周期和值域; (2)将函数的图象按向量平移后得到函数的图象,求函数的单调区间。
(本小题满分10分)选修4—1:几何证明选讲 如图,⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P. (I)求证:AD∥EC;(Ⅱ)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.
(本小题满分12分) 已知椭圆的中心在坐标原点,长轴长为,离心率,过右焦点与轴不垂直的直线交椭圆于,两点. (Ⅰ)求椭圆的标准方程; (Ⅱ)在线段上是否存在点,使得以为 邻边的平行四边形是菱形? 若存在,求出的取值范围; 若不存在,请说明理由.