设椭圆过(2,) ,(,1)两点,为坐标原点。(1)求椭圆的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆恒有两个交点且?若存在,写出该圆的方程,并求的取值范围,若不存在说明理由。
( 12分)已知等差数列,,(1)求数列的通项公式(2)设,求数列的前项和
函数,设(其中为的导函数),若曲线在不同两点、处的切线互相平行,且恒成立,求实数的最大值
(12分)已知函数,(Ⅰ)当时,求该函数的定义域和值域;(Ⅱ)如果在区间上恒成立,求实数的取值范围.
如图,四棱锥中,⊥底面,底面为梯形,,,且,点是棱上的动点.(Ⅰ)当∥平面时,确定点在棱上的位置;(Ⅱ)在(Ⅰ)的条件下,求二面角的余弦值.
在中,分别为角所对的边,且,(Ⅰ)求角; (Ⅱ)若,,的周长为,求函数的取值范围.