已知函数 (R).(1) 当时,求函数的极值;(2)若函数的图象与轴有且只有一个交点,求a的取值范围.
(本小题满分13分)在数列(I)若是公比为β的等比数列,求α和β的值。(II)若,基于事实:如果d是a和b的公约数,那么d一定是a-b的约数。研讨是否存在正整数k和n,使得有大于1的公约数,如果存在求出k和n,如果不存在请说明理由。
(本小题满分12分)已知点是椭圆上任意一点,直线的方程为(I)判断直线与椭圆E交点的个数;(II)直线过P点与直线垂直,点M(-1,0)关于直线的对称点为N,直线PN恒过一定点G,求点G的坐标。
如图,平面ABEF平面ABCD,四边形ABEF与ABCD都是直角梯形,(I)证明:C,D,F,E四点共面;(II)设AB=BC=BE,求二面角A—ED—B的大小。
(本小题满分12分)已知的三内角A,B,C所对三边分别为a,b,c,且(I)求的值。(II)若的面积求a的值。
(本小题满分12分)一射击测试每人射击三次,每击中目标一次记10分。没有击中记0分,某人每次击中目标的概率为(I)求此人得20分的概率;(II)求此人得分的数学期望与方差。