(本小题满分14分)如图6,是圆柱的母线,是圆柱底面圆的直径,是底面圆周上异于的任意一点, (1)求证:平面; (2)求三棱锥的体积的最大值.
设椭圆,F是它的左焦点,Q是右准线与x轴的交点,点满足向量与PQ数量积为0,N是直线PQ与椭圆的一个公共点,当时,求椭圆的方程.
已知中心在原点,焦点在x轴上的椭圆的左顶点为A,上顶点为B,左焦点到直线AB的距离为,求椭圆的离心率.
如图,某农场在处有一堆肥料沿道路或送到大田中去,已知,,,且,,能否在大田中确定一条界线,使位于界线一侧沿送肥料较近?若能,请建立适当坐标系求出这条界线方程.
已知椭圆的中心为坐标原点O,焦点在轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与共线. (1)求椭圆的离心率; (2)设M为椭圆上任意一点,且,证明为定值.
设F1、F2分别为椭圆C:=1(a>b>0)的左、右两个焦点. (1)若椭圆C上的点A(1,)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标; (2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程; (3)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kPM与kPN之积是与点P位置无关的定值.试对双曲线写出具有类似特性的性质,并加以证明.