(本小题共14分)已知函数其中常数.(1)当时,求函数的单调递增区间;(2)当时,若函数有三个不同的零点,求m的取值范围;(3)设定义在D上的函数在点处的切线方程为当时,若在D内恒成立,则称P为函数的“类对称点”,请你探究当时,函数是否存在“类对称点”,若存在,请最少求出一个“类对称点”的横坐标;若不存在,说明理由.
已知函数f(x)=alnx+bx,且f(1)= -1,f′(1)=0,(1)求f(x);(2)求f(x)的最大值;(3)x>0,y>0,证明:lnx+lny≤.
数列{an}满足a1+2a2+22a3+…+2n-1an=4n.(1)求通项an;(2)求数列{an}的前n项和 Sn.
旅游公司为4个旅游团提供5条旅游线路,每个旅游团任选其中一条.(1)求4个旅游团选择互不相同的线路共有多少种方法;(2)求恰有2条线路被选中的概率;(3)求选择甲线路旅游团数的数学期望.
如图:直三棱柱(侧棱⊥底面)ABC—A1B1C1中,∠ACB=90°,AA1=AC=1,BC=,CD⊥AB,垂足为D.(1)求证:BC∥平面AB1C1;(2)求点B1到面A1CD的距离.
如图,两个圆形飞轮通过皮带传动,大飞轮O1的半径为2r(r为常数),小飞轮O2的半径为r,O1O2=4r.在大飞轮的边缘上有两个点A,B,满足∠BO1A=,在小飞轮的边缘上有点C.设大飞轮逆时针旋转,传动开始时,点B,C在水平直线O1O2上.(1)求点A到达最高点时A,C间的距离;(2)求点B,C在传动过程中高度差的最大值.