(本小题共13分)设k∈R,函数 ,,x∈R.试讨论函数F(x)的单调性.
已知椭圆E:=1(a>b>o)的离心率e=,且经过点(,1),O为坐标原点。 (Ⅰ)求椭圆E的标准方程; (Ⅱ)圆O是以椭圆E的长轴为直径的圆,M是直线x=-4在x轴上方的一点,过M作圆O的两条切线, 切点分别为P、Q,当∠PMQ=60°时,求直线PQ的方程.
右图为一组合体,其底面为正方形,平面,,且 (Ⅰ)求证:平面; (Ⅱ)求四棱锥的体积; (Ⅲ)求该组合体的表面积.
已知递增的等比数列满足是的等差中项。 (Ⅰ)求数列的通项公式; (Ⅱ)若是数列的前项和,求
选修4—5;不等式选讲. 设函数. (Ⅰ)解不等式; (Ⅱ)对于实数,若,求证.
选修4—4;坐标系与参数方程. 已知直线为参数), 曲线(为参数). (Ⅰ)设与相交于两点,求; (Ⅱ)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线的距离的最小值.