定义在非零实数集上的函数满足,且是区间上的递增函数. (1)求:的值;(2)求证:;(3)解不等式.
(1)若求; (2)若,求的值.
如图,在平面直角坐标系中,圆交轴于点(点在轴的负半轴上),点为圆上一动点,分别交直线于两点。 (1)求两点纵坐标的乘积; (2)若点的坐标为,连接交圆于另一点. ①试判断点与以为直径的圆的位置关系,并说明理由; ②记的斜率分别为,试探究是否为定值?若是,请求出该定值;若不是,请说明理由.
如图,在三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°。 (Ⅰ)求证:C1B⊥平面ABC; (Ⅱ)设(0≤λ≤1),且平面AB1E与BB1E所成的锐二面角的大小为30°,试求λ的值.
如图,在平面直角坐标系中,平行于轴且过点(3,2)的入射光线被直线反射.反射光线交轴于点,圆过点且与都相切。 (1)求所在直线的方程和圆的方程; (2)设分别是直线和圆上的动点,求的最小值及此时点的坐标.
在正三棱锥中,、分别为棱、的中点,且。 (1)求证:直线平面; (2)求证:平面平面。