(14分)已知椭圆的中心在原点O,焦点在坐标轴上,直线y = x +1与该椭圆相交于P和Q,且OP⊥OQ,|PQ|=,求椭圆的方程
(本小题满分12分)设平顶向量= ( m , 1), =" (" 2 , n ),其中 m, n {1,2,3,4}.(I)请列出有序数组( m,n )的所有可能结果;(II)记“使得(-)成立的( m,n )”为事件A,求事件A发生的概率。
设A(x1,y1)、B(x2,y2)是函数的图象上任两点,且,已知点M横坐标为,(1)求点M的纵坐标;(2)若,求Sn。(3)已知为数列{an}的前n项和, 若对一切都成立,求取值范围。
如图,在斜三棱柱ABC—A1B1C1中,侧面AA1B1B⊥底面ABC,侧棱AA1与底面ABC成60°的角,AA1=2,底面ABC是边长为2的正三角形,其重心是G点,E是线段BC1上的一点,且BEBC1,(1)求证:GE∥侧面AA1B1B;(2)求平面B1GE与底面ABC所成锐二面角的正切值。
设,其中a为正实数,(1)当的极值点;(2)若为R上的单调函数,求a的取值范围。
△ABC中,已知,记角A,B,C的对边依次为a,b,c,(1)求∠C大小;(2)若c=2,且△ABC为锐角三角形,求a2+b2取值范围。