已知函数的导函数,数列{}的前n项和为,点(n,)均在函数的图象上.若=(+3)⑴当n≥2时,试比较与的大小;⑵记试证
(本小题满分12分)已知向量,函数,且图象上一个最高点的坐标为,与之相邻的一个最低点的坐标为.(1)求的解析式;(2)在△ABC中,是角A、B、C所对的边,且满足,求角B的大小以及的取值范围.
如图,过曲线:上一点作曲线的切线交轴于点,又过作 轴的垂线交曲线于点,然后再过作曲线的切线交轴于点,又过作轴的垂线交曲线于点,,以此类推,过点的切线 与轴相交于点,再过点作轴的垂线交曲线于点(N).(1) 求、及数列的通项公式;(2) 设曲线与切线及直线所围成的图形面积为,求的表达式;(3) 在满足(2)的条件下, 若数列的前项和为,求证:N.
(本小题满分14分)设函数在上的导函数为,在上的导函数为,若在上,恒成立,则称函数在上为“凸函数”.已知.(1)若为区间上的“凸函数”,试确定实数的值;(2)若当实数满足时,函数在上总为“凸函数”,求的最大值.
(本小题满分14分)已知椭圆的离心率. 直线()与曲线交于不同的两点,以线段为直径作圆,圆心为. (1) 求椭圆的方程; (2) 若圆与轴相交于不同的两点,求的面积的最大值.
(本小题满分l4分)如图4,在四棱锥中,底面是矩形,平面,,,于点.(1) 求证:;(2) 求直线与平面所成的角的余弦值.