已知数列,满足a1=2,2an=1+anan+1,bn=an-1, bn≠0⑴求证数列是等差数列,并求数列的通项公式;⑵令Tn为数列的前n项和,求证:Tn<2
选修4-4:坐标系与参数方程已知直线的参数方程是,圆C的极坐标方程为.(1)求圆心C的直角坐标;(2)由直线上的点向圆C引切线,求切线长的最小值.
选修4-1:几何证明选讲如图,AB、CD是圆的两条平行弦,BE//AC,BE交CD于E、交圆于F,过A点的切线交DC的延长线于P,PC=ED=1,PA=2.(1)求AC的长;(2)求证:BE=EF.
已知函数.(1)若,求函数的极值;(2)若对任意的,都有成立,求的取值范围.
抛物线上一点到其焦点的距离为5.(1)求与的值; (2)若直线与抛物线相交于、两点,、分别是该抛物线在、两点处的切线,、分别是、与该抛物线的准线交点,求证:
为了研究化肥对小麦产量的影响,某科学家将一片土地划分成200个的小块,并在100个小块上施用新化肥,留下100个条件大体相当的小块不施用新化肥.下表1和表2分别是施用新化肥和不施用新化肥的小麦产量频数分布表(小麦产量单位:kg)(1)完成下面频率分布直方图;(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计施用化肥和不施用化肥的一小块土地的小麦平均产量;(3)完成下面2×2列联表,并回答能否有99.5%的把握认为“施用新化肥和不施用新化肥的小麦产量有差异”表3:附: