某商店在四个月的试销期内,只销售A、B两个品牌的电视机,共售出400台.试销结束后,只能经销其中的一个品牌,为作出决定,经销人员正在绘制两幅统计图,如图11-1和图11-2.第四个月销量占总销量的百分比是 ;在图11-2中补全表示B品牌电视机月销量的折线;为跟踪调查电视机的使用情况,从该商店第四个月售出的电视机中,随机抽取一台,求抽到B品牌电视机的概率经计算,两个品牌电视机月销量的平均水平相同,请你结合折线的走势进行简要分析,判断该商店应经销哪个品牌的电视机.
如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点B左侧),与y轴交于点C。 (1)点A、B、C的坐标分别为 、 、 。 (2)若直线y=kx+t经过C、M两点,且与x轴交于点D,试证明四边形CDAN是平行四边形; (3)点P在抛物线的对称轴x=1上运动,请探索:在x轴上方是否存在这样的P点,使以P为圆心的圆经过A、B两点,并且与直线CD相切,若存在,请求出点P的坐标;若不存在,请说明理由。
如图,在平面直角坐标系xOy中,△ABC的边AC在x轴上,边BC⊥x轴,双曲线y=与边BC交于点D(4,m),与边AB交于点E(2,n).(1)求n关于m的函数关系式;(2)若BD=2,tan∠BAC=,求k的值和点B的坐标.
如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB//CD,OB=6cm,OC=8cm,求:(1)∠BOC的度数; (2)BE+CG的长; (3)⊙O的半径。
如图,直线y=kx+b与y轴交于点A,与x轴交于点B,边长为2的等边ΔCOD的顶点C、D分别在线段AB、OB上,且DO=2DB. (1)求B、C两点的坐标; (2)求直线AB的解析式.
如图,在平面直角坐标系中,点的坐标分别为.(1)请在图中画出,使得与关于点成中心对称;(2)若一个二次函数的图象经过(1)中的三个顶点,求此二次函数的关系式.