(8分)某酒店有三人普通间、双人普通间两种客房,收费标准为:一个50人的旅游团到该酒店入住,住了一些三人普通间和双人普通间客房。若每间客房正好注满,设三人普通间住了x间。解答下列问题:(1)双人普通间客房住了 间(用含x的代数式表示)(2)若该旅游团一天的住宿费要求不高于3000元,且旅游要求住的双人普通间不少于三人普通间,那么该旅游团住进的三人普通间、双人普通间各有多少间?
解方程组(1)(2)
计算: (1);(2).
如图1,已知正方形ABCD,把一个直角与正方形叠合,使直角顶点与一重合,当直角的一边与BC相交于E点,另一边与CD的延长线相交于F点时. (1)证明:BE=DF; (2)如图2,作∠EAF的平分线交CD于G点,连接EG.证明:BE+DG=EG; (3)如图3,将图1中的“直角”改为“∠EAF=45°”,当∠EAF的一边与BC的延长线相交于E点,另一边与CD的延长线相交于F点,连接EF.线段BE,DF和EF之间有怎样的数量关系?并加以证明.
第一中学组织七年级部分学生和老师到苏州乐园开展社会实践活动,租用的客车有50座和30座两种可供选择.学校根据参加活动的师生人数计算可知:若只租用30座客车x辆,还差5人才能坐满; (1)则该校参加此次活动的师生人数为(用含x的代数式表示); (2)若只租用50座客车,比只租用30座客车少用2辆,求参加此次活动的师生至少有多少人? (3)已知租用一辆30座客车往返费用为400元,租用一辆50座客车往返费用为600元,学校根据师生人数选择了费用最低的租车方案,总费用为2200元,试求参加此次活动的师生人数.
如图,在平面直角坐标系中,正方形OABC的边长为a.直线y=bx+c交x轴于E,交y轴于F,且a、b、c分别满足-(a-4)2≥0, (1)求直线y=bx+c的解析式并直接写出正方形OABC的对角线的交点D的坐标; (2)直线y=bx+c沿x轴正方向以每秒移动1个单位长度的速度平移,设平移的时间为t秒,问是否存在t的值,使直线EF平分正方形OABC的面积?若存在,请求出t的值;若不存在,请说明理由; 点P为正方形OABC的对角线AC上的动点(端点A、C除外),PM⊥PO,交直线AB于M,求的值