在等腰直角△ABC中,∠C=90°,AC=BC,D是AB上任一点,AE⊥CD于E,BF⊥CD交CD延长线于F,CH⊥AB于H,交AE于G.求证:(1)BD=CG (2)DF=GE
第十五届中国“西博会”将于2014年10月底在成都召开,现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2、3、4、5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.
先化简,再求值:,其中,.
(1)计算 .(2)解不等式组
如图,抛物线与x轴交于A(5,0)、B(-1,0)两点,过点A作直线AC⊥x轴,交直线于点C;(1)求该抛物线的解析式;(2)求点A关于直线的对称点的坐标,判定点是否在抛物线上,并说明理由;(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.
阅读材料:已知,如图(1),在面积为S的△ABC中, BC=a,AC="b," AB=c,内切圆O的半径为r.连接OA、OB、OC,△ABC被划分为三个小三角形.∵ .∴.(1)类比推理:若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),如图(2),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r;(2)理解应用:如图(3),在等腰梯形ABCD中,AB∥DC,AB=21,CD=11,AD=13,⊙O1与⊙O2分别为△ABD与△BCD的内切圆,设它们的半径分别为r1和r2,求的值.