如图,一次函数的图象与反比例函数的图象交于点P,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交轴、轴于点C、D,且S△PBD=4,.求点D的坐标;求一次函数与反比例函数的解析式;根据图象写出当时,一次函数的值大于反比例函数的值的的取值范围.
在的网格中,画一个格点三角形(三角形的顶点都在虚线的交点上),使得它与相似但不全等,请画出两种不同相似比的情况.(所画图形不能超出虚线范围)
已知:如图,AC与BD交于点O,AO=CO,BO=DO.求证:AB∥CD
计算:.
已知,如图,在直角梯形COAB中,OC∥AB,以O为原点建立平面直角坐标系,A、B、C三点的坐标分别为A(8,0),B(8,10),C(0,4),点D为线段BC的中点,动点P从点O出发,以每秒1个单位的速度,沿折线OABD的路线移动,移动的时间为秒.(1)求直线BC的解析式;(2)若动点P在线段OA上移动,当为何值时,四边形OPDC的面积是梯形COAB面积的?(3)动点P从点O出发,沿折线OABD的路线移动过程中,设△OPD的面积为S,请直接写出S与 的函数关系式,并写出自变量的取值范围。
阅读下列材料,并解决后面的问题.材料:一般地,n个相同的因数相乘:记为。如23=8,此时,3叫做以2为底8的对数,记为。一般地,若,则n叫做以为底b的对数,记为,则4叫做以3为底81的对数,记为。问题:(1)计算以下各对数的值: (2)观察(1)中三数4、16、64之间满足怎样的关系式?之间又满足怎样的关系式? (3)由(2)的结果,你能归纳出一个一般性的结论吗? (4)根据幂的运算法则:以及对数的含义证明上述结论。证明: