如图为河岸一段的示意图.一游泳者站在河岸的A点处,欲前往对岸的C点处,若河宽BC为100,A、B相距100,他希望尽快到达C,准备从A步行到E(E为河岸AB上的点),再从E游到C.已知此人步行速度为游泳速度为.(1)设试将此人按上述路线从A到C所需时间T表示为的函数,并求自变量的取值范围;(2)当为何值时,此人从A经E游到C所需时间T最小,其最小值是多少?
(本小题满分13分) 在中,角,,所对的边分别为,,,且,. (Ⅰ)求,的值; (Ⅱ)若,求,的值.
(本小题共13分) 已知数列的前项和为,且满足,. (Ⅰ)求证:{}是等差数列; (Ⅱ)求数列的通项公式; (Ⅲ)若,求证: .
(本小题共14分) 已知椭圆的中心在原点,焦点在轴上,经过点且离心率.过定点的直线与椭圆相交于,两点. (Ⅰ)求椭圆的方程; (Ⅱ)在轴上是否存在点,使为常数?若存在,求出点的坐标;若不存 在,请说明理由.
(本小题共14分) 已知函数在与处都取得极值. (Ⅰ)求的值及函数的单调区间; (Ⅱ)若对,不等式恒成立,求的取值范围.
(本小题共13分) 在平面直角坐标系中,平面区域中的点的坐标满足,从区域中随机取点. (Ⅰ)若,,求点位于第四象限的概率; (Ⅱ)已知直线与圆相交所截得的弦长为, 求的概率.