某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:.设李明每月获得利润为W(元),当销售单价定为多少元时,每月可获得最大利润?如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)
在数学活动课上,九年级(1)班数学兴趣小组的同学们测量校园内一棵大树的高度,设计的方案及测量数据如下:在大树前的平地上选择一点,测得由点A看大树顶端的仰角为35°;在点和大树之间选择一点(、、在同一直线上),测得由点看大树顶端的仰角恰好为45°;量出、两点间的距离为4.5米.请你根据以上数据求出大树的高度.(可能用到的参考数据:sin35°≈0.57 cos35°≈0.82 tan35°≈0.70).
如图,平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:∠BAE=∠DCF。
已知正比例函数y=kx与反比例函数y=的图象都过A(m ,1)点,求此正比例函数解析式及另一个交点的坐标
△ABC在平面直角坐标系中的位置如图所示. 作出△ABC关于轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;观察△A1B1C1和△A2B2C2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.
化简并求值:已知:,求的值.