△ABC在平面直角坐标系中的位置如图所示. 作出△ABC关于轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;观察△A1B1C1和△A2B2C2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.
如图,四边形ABCD中,AD∥BC,∠A=90°,AD=1厘米,AB=3厘米,BC=5厘米,动点P从点B出发以1厘米/秒的速度沿BC方向运动,动点Q从点C出发以2厘米/秒的速度沿CD方向运动,P,Q两点同时出发,当点Q到达点D时停止运动,点P也随之停止,设运动时间为t秒(t>0). (1)求线段CD的长; (2)t为何值时,线段PQ将四边形ABCD的面积分为1:2两部分? (3)伴随P,Q两点的运动,线段PQ的垂直平分线为l. ①t为何值时,l经过点C? ②求当l经过点D时t的值,并求出此时刻线段PQ的长.
如图,AB是⊙O的直径,点D是上一点,且∠BDE=∠CBE,BD与AE交于点F. (1)求证:BC是⊙O的切线; (2)若BD平分∠ABE,求证:=DF•DB; (3)在(2)的条件下,延长ED,BA交于点P,若PA=AO,DE=2,求PD的长和⊙O的半径.
我市某养殖场计划购买甲、乙两种鱼苗共700尾,甲种鱼苗每尾3元,乙种鱼苗每尾5元,相关资料表明:甲、乙两种鱼苗的成活率分别为85%和90%. (1)若购买这两种鱼苗共用去2500元,则甲、乙两种鱼苗各购买多少尾? (2)若要使这批鱼苗的总成活率不低于88%,则甲种鱼苗至多购买多少尾? (3)在(2)的条件下,应如何选购鱼苗,使购买鱼苗的费用最低?并求出最低费用.
为了弘扬“社会主义核心价值观”,市政府在广场树立公益广告牌,如图所示,为固定广告牌,在两侧加固钢缆,已知钢缆底端D距广告牌立柱距离CD为3米,从D点测得广告牌顶端A点和底端B点的仰角分别是60°和45°. (1)求公益广告牌的高度AB; (2)求加固钢缆AD和BD的长.(注意:本题中的计算过程和结果均保留根号)
某学校为了解七年级男生体质健康情况,随机抽取若干名男生进行测试,测试结果分为优秀、良好、合格、不合格四个等级,统计整理数据并绘制图1、图2两幅不完整的统计图,请根据图中信息回答下列问题: (1)本次接收随机抽样调查的男生人数为人,扇形统计图中“良好”所对应的圆心角的度数为; (2)补全条形统计图中“优秀”的空缺部分; (3)若该校七年级共有男生480人,请估计全年级男生体质健康状况达到“良好”的人数.