已知函数(1)确定在(0,+)上的单调性;(2)设在(0,2)上有极值,求a的取值范围
设椭圆: 的离心率为,点(,0),(0,),原点到直线的距离为.(Ⅰ)求椭圆的方程;(Ⅱ)设点为(,0),点在椭圆上(与、均不重合),点在直线上,若直线的方程为,且,试求直线的方程.
(本小题满分14分)如果对于函数的定义域内任意的,都有成立,那么就称函数是定义域上的“平缓函数”.(1)判断函数,是否是“平缓函数”;(2)若函数是闭区间上的“平缓函数”,且.证明:对于任意的,都有成立.(3)设、为实常数,.若是区间上的“平缓函数”,试估计的取值范围(用表示,不必证明).
(本小题满分14分)已知数列的前项和,.(1)求的通项公式;(2)设N+,集合,.现在集合中随机取一个元素,记的概率为,求的表达式.
(本小题满分14分)如图5,是△的重心,、分别是边、上的动点,且、、三点共线.(1)设,将用、、表示;(2)设,,证明:是定值;(3)记△与△的面积分别为、.求的取值范围.
(本小题满分14分)已知函数满足(其中为在点处的导数,为常数).(1)求函数的单调区间;(2)若方程有且只有两个不等的实数根,求常数;(3)在(2)的条件下,若,求函数的图象与轴围成的封闭图形的面积.