(本小题13分)一个多面体的直观图和三视图如图所示,其中,分别是,的中点,是上的一动点.(Ⅰ)求该几何体的体积与表面积;(Ⅱ)求证:⊥; (Ⅲ)当时,在棱上确定一点,使得//平面,并给出证明.
已知函数.设数列满足,,数列满足,. (Ⅰ)用数学归纳法证明; (Ⅱ)证明.
已知抛物线的焦点为是抛物线上横坐标为,且位于轴上方的点,到抛物线准线的距离等于.过作垂直于轴,垂足为,的中点为.(1) 求抛物线方程;(2) 过作,垂足为,求点的坐标;(3) 以为圆心,为半径作圆.当是轴上一动点时,讨论直线与圆的位置关系.
已知双曲线,若的上支顶点为,且上支与直线交于点,以为焦点,为顶点,开口向下的抛物线通过点,当的斜率在区间上变化时,求实数的取值范围.
设抛物线的准线与轴的交点为,过点作直线交抛物线于两点.若直线的斜率依次取时,线段的垂直平分线与对称轴的交点依次为,当时,求的值.
设抛物线的准线与轴的交点为,过点作直线交抛物线于两点,若线段的垂直平分线交对称轴于,求证:;