(本题满分14分) 设等差数列{an}的首项a1为a,公差d=2,前n项和为Sn.(Ⅰ) 若S1,S2,S4成等比数列,求数列{an}的通项公式;(Ⅱ) 证明:n∈N*, Sn,Sn+1,Sn+2不构成等比数列.
设函数. (Ⅰ)求函数的单调区间; (Ⅱ)当时,是否存在整数,使不等式恒成立?若存在,求整数的值;若不存在,请说明理由. (Ⅲ)关于的方程在上恰有两个相异实根,求实数的取值范围.
如图,在三棱柱中,每个侧面均为正方形,为底边的中点,为侧棱的中点. (Ⅰ)求证:∥平面; (Ⅱ)求证:平面; (Ⅲ)求直线与平面所成角的正弦值.
用数学归纳法证明等式:n,n
(1)求证:点M的纵坐标为定值,且直线PQ经过一定点; (2)求面积的最小值。
(Ⅰ)求的单调区间和值域; (Ⅱ)设,函数,若对于任意,总存在, 使得成立,求的取值范围