(本题满分13分) 为了了解某校高中部学生的体能情况,体育组决定抽样三个年级部分学生进行跳绳测试,并将所得的数据整理后画出频率分布直方图.已知图中从左到右的前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数是5. (I) 求第四小组的频率和参加这次测试的学生人数; (II) 在这次测试中,学生跳绳次数的中位数落在第几小组内? (III) 参加这次测试跳绳次数在100次以上为优秀,试估计该校此年级跳绳成绩的优秀率是多少?
求证:二项式x2n-y2n (n∈N*)能被x+y整除.
用数学归纳法证明:对任意的nN*,1-+-+…+-=++…+.
已知等差数列{an}的公差d大于0,且a2,a5是方程x2-12x+27=0的两根,数列{bn}的前n项和为Tn,且Tn=1-.(1)求数列{an}、{bn}的通项公式;(2)设数列{an}的前n项和为Sn,试比较与Sn+1的大小,并说明理由.
用数学归纳法证明:对一切大于1的自然数,不等式(1+)(1+)…(1+)>均成立.
试证:当n为正整数时,f(n)=32n+2-8n-9能被64整除.