(本题满分13分) 为了了解某校高中部学生的体能情况,体育组决定抽样三个年级部分学生进行跳绳测试,并将所得的数据整理后画出频率分布直方图.已知图中从左到右的前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数是5. (I) 求第四小组的频率和参加这次测试的学生人数; (II) 在这次测试中,学生跳绳次数的中位数落在第几小组内? (III) 参加这次测试跳绳次数在100次以上为优秀,试估计该校此年级跳绳成绩的优秀率是多少?
已知函数 (1)判断函数的奇偶性; (2)若在区间是增函数,求实数的取值范围。
如图所示,在棱长为的 正方体ABCD—A1B1C1D1中,E、F、H分别是棱BB1、CC1、DD1的中点。 (Ⅰ)求证:BH//平面A1EFD1; (Ⅱ)求直线AF与平面A1EFD1所成的角的正弦值。
已知数列是等差数列,,,为数列的前项和 (1)求和; (2)若,求数列的前项和
已知向量,,函数. (Ⅰ)求的最小正周期; (Ⅱ)若,求的最大值和最小值.
的三个顶点分别为,, (1)求边AC所在直线方程 (2)求AC边上的中线BD所在直线方程 (3)求的外接圆的方程