(本小题满分13分)已知.(I)求函数在上的最小值;(II)对一切恒成立,求实数的取值范围.
(本小题13分)已知命题A:方程表示焦点在轴上的椭圆; 命题B:实数使得不等式成立。 (1)若命题A为真,求实数的取值范围; (2)若命题B是命题A的必要不充分条件,求实数的取值范围。
(本小题13分)已知双曲线的离心率为,实轴长为2。 (1)求双曲线C的方程; (2)若直线被双曲线C截得的弦长为,求的值。
(本小题满分14分)在平面直角坐标系中,已知圆过坐标原点O且圆心在曲线上. (Ⅰ)若圆M分别与轴、轴交于点、(不同于原点O),求证:的面积为定值; (Ⅱ)设直线与圆M 交于不同的两点C,D,且,求圆M的方程; (Ⅲ)设直线与(Ⅱ)中所求圆M交于点、, 为直线上的动点,直线,与圆M的另一个交点分别为,,求证:直线过定点.
(本小题满分13分)已知关于的二次函数 (Ⅰ)设集合和,分别从集合,中随机取一个数作为和,求函数在区间上是增函数的概率. (Ⅱ)设点是区域内的随机点,求函数在区间上是增函数的概率.
(本小题满分12分)如图,四棱锥中,平面,,,,为的中点. (Ⅰ)证明:; (Ⅱ)若二面角为,求直线与平面所成角的正切值. (Ⅲ)若,求平面与平面PAB所成的锐二面角的余弦值