(本小题满分13分)如图,四边形为正方形,⊥平面,∥,==.(I)证明:平面⊥平面;(II)求二面角的余弦值.
已知集合A={y|y=x2-x+1,x∈[,2]},B={x|x+m2≥1};命题p:x∈A,命题q:x∈B,并且命题p是命题q的充分条件,求实数m的取值范围.
求证:方程x2+ax+1=0的两实根的平方和大于3的必要条件是|a|>,这个条件是其充分条件吗?为什么?
已知函数f(x)在区间(-∞,+∞)上是增函数,a,b∈R.(1)求证:若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b);(2)判断(1)中命题的逆命题是否正确,并证明你的结论.
已知二次函数f(x)=ax2+x,若对任意x1,x2∈R,恒有2f()≤f(x1)+f(x2)成立,不等式f(x)<0的解集为A.(1)求集合A;(2)设集合B={x||x+4|<a},若集合B是集合A的子集,求a的取值范围.
已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.(1)若A∪B=A,求实数m的取值范围;(2)当x∈Z时,求A的非空真子集的个数;(3)当x∈R时,若A∩B=∅,求实数m的取值范围.