(本小题满分13分)某电视台的冲关电视节,要求参赛者从道选题中一次性随机抽取道题,至少独立的正确回答道题,方可进入下一关.已知道备选题中参赛者小福有道题能正确回答,道题不能正确回答;参赛者小州每题正确回答的概率都是,且每题正确回答与否互不影响.(Ⅰ)分别求小福、小州两人正确回答试题数的分布列,并计算其数学期望;(Ⅱ)请分析比较小福、小州两人谁进入下一关的可能性大.
(13分) (1)已知,,求的值; (2)已知.求的值.
(13分)计算(1); (2).
(13分)已知;,求,。
平面直角坐标系中,直线截以原点为圆心的圆所得的弦长为 (1)求圆的方程; (2)若直线与圆切于第一象限,且与坐标轴交于,当长最小时,求直线的方程; (3)问是否存在斜率为的直线,使被圆截得的弦为,以为直径的圆经过原点.若存在,写出直线的方程;若不存在,说明理由.
如图,三棱柱中,平面,,,为的中点. (1)求证:∥平面; (2)求二面角的余弦值; (3)设的中点为,问:在矩形内是否存在点,使得平面.若存在,求出点的位置,若不存在,说明理由.