平面直角坐标系中,直线截以原点为圆心的圆所得的弦长为(1)求圆的方程;(2)若直线与圆切于第一象限,且与坐标轴交于,当长最小时,求直线的方程;(3)问是否存在斜率为的直线,使被圆截得的弦为,以为直径的圆经过原点.若存在,写出直线的方程;若不存在,说明理由.
设函数 f n ( x ) = x n + b x + c ( n ∈ N + , b , c ∈ R )
(1)设 n ≥ 2 , b = 1 , c = - 1 ,证明: f n ( x ) 在区间 1 2 , 1 内存在唯一的零点; (2)设 n 为偶数, f ( - 1 ) ≤ 1 , f ( 1 ) ≤ 1 ,求 b + 3 c 的最小值和最大值; (3)设 n = 2 ,若对任意 x 1 , x 2 ∈ - 1 , 1 ,有 f 2 ( x 1 ) - f 2 ( x 2 ) ≤ 4 ,求 b 的取值范围;
已知椭圆 C 1 : x 2 4 + y 2 = 1 , C 2 以 C 1 的长轴为短轴,且与 C 1 有相同的离心率。 (1)求椭圆 C 2 的方程; (2)设 O 为坐标原点,点 A , B 分别在椭圆 C 1 和 C 2 上, O B ⇀ = 2 O A ⇀ ,求直线 A B 的方程.
假设甲乙两种品牌的同类产品在某地区市场上销售量相等,为了解他们的使用寿命,现从两种品牌的产品中分别随机抽取100个进行测试,结果统计如下:
(Ⅰ)估计甲品牌产品寿命小于200小时的概率; (Ⅱ)这两种品牌产品中,某个产品已使用了200小时,试估计该产品是甲品牌的概率.
直三棱柱 A B C - A 1 B 1 C 1 中, A B = A A 1 , ∠ C A B = π 2 .
(Ⅰ)证明 C B 1 ⊥ B A 1 ; (Ⅱ)已知 A B = 2 , B C = 5 ,求三棱锥 C 1 - A B A 1 的体积.
函数 f ( x ) = A sin ( ω x - π 6 ) + 1 ( A > 0 , ω > 0 ) 的最大值为3, 其图像相邻两条对称轴之间的距离为 π 2 , (1)求函数 f ( x ) 的解析式; (2)设 α ∈ ( 0 , π 2 ) ,则 f ( α 2 ) = 2 ,求 α 的值