平面直角坐标系中,直线截以原点为圆心的圆所得的弦长为(1)求圆的方程;(2)若直线与圆切于第一象限,且与坐标轴交于,当长最小时,求直线的方程;(3)问是否存在斜率为的直线,使被圆截得的弦为,以为直径的圆经过原点.若存在,写出直线的方程;若不存在,说明理由.
(本题12分) 已知函有极值,且曲线处的切线斜率为3. (1)求函数的解析式; (2)求在[-4,1]上的最大值和最小值。 (3)函数有三个零点,求实数的取值范围.
(本题12分) 在中,角所对的边为已知. (1)求的值; (2)若的面积为,且,求的值.
(本题12分)某公司是专门生产健身产品的企业,第一批产品上市销售40天内全部售完,该公司对第一批产品上市后的市场销售进行调研,结果如图(1)、(2)所示.其中(1)的抛物线表示的是市场的日销售量与上市时间的关系;(2)的折线表示的是每件产品的销售利润与上市时间的关系. (1)写出市场的日销售量与第一批产品A上市时间t的关系式; (2)第一批产品A上市后的第几天,这家公司日销售利润最大,最大利润是多少?
(本题12分) 设命题P:函数在区间[-1,1]上单调递减;命题q:函数的值域是R.如果命题p或q为真命题,p且q为假命题,求a的取值范围.
(本题12分) 已知函数。 (1)求的最小正周期; (2)若将的图象按向量=(,0)平移得到函数g(x)的图象,求函数g(x)在区间上的最大值和最小值。