(本小题满分14分)如图,三角形ABC中,AC=BC=,四边形ABED是正方形,平面ABED⊥底面ABC,若G、F分别是EC、BD的中点。(1)求证:GF//底面ABC;(2)求证:AC⊥平面EBC;(3)若正方形ABED的边长为1,求几何体ADEBC的体积。
计算:(tan10°-)·sin40°.
已知函数f(x)=sin+cos,x∈R. (1)求f(x)的最小正周期和最小值; (2)已知cos(β-α)=,cos(β+α)=-,0<α<β≤,求证:[f(β)]2-2=0.
如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角α、β,它们的终边分别与单位圆相交于A、B两点.已知A、B的横坐标分别为、.求: (1) tan(α+β)的值; (2) α+2β的值.
已知cos α=,cos(α+β)=-,且α、β∈,求cos(α-β)的值.
已知α、β均为锐角,且sinα=,tan(α-β)=-. (1) 求sin(α-β)的值; (2) 求cosβ的值.