(本小题满分12分)已知数列{an}的前n项和Sn=2n2-2n,数列{bn}的前n项和Tn=3-bn.①求数列{an}和{bn}的通项公式;②设cn=an·bn,求数列{cn}的前n项和Rn的表达式.
(本小题满分12分)已知抛物线C:的焦点为F,直线与轴的交点为P,与C的交点为Q,且. (Ⅰ)求C的方程; (Ⅱ)点在抛物线C上,是否存在直线与C交于点,使得△是以为斜边的直角三角形?若存在,求出直线的方程;若不存在说明理由.
(本小题满分12分)如图,直三棱柱中,,是棱的中点,. (Ⅰ)证明:; (Ⅱ)求二面角的大小.
(本小题满分12分)砷是广泛分布于自然界中的非金属元素, 长期饮用高砷水会直接危害群众的身心健康和生命安全,而近水农村地区,水质情况更需要关注.为了解甲、乙两地区农村居民饮用水中砷含量的基本情况,分别在两地随机选取10个村子,其砷含量的调查数据如下(单位:): 甲地区的10个村子饮用水中砷的含量: 52 32 41 72 43 35 45 61 53 44 乙地区的10个村子饮用水中砷的含量: 44 56 38 61 7257 64 71 58 62 (Ⅰ)根据两组数据完成下面茎叶图,试比较两个地区中哪个地区的饮用水中砷含量更高,并说明理由; (Ⅱ)国家规定居民饮用水中砷的含量不得超过50,现医疗卫生组织决定向两个地区中每个砷超标的村子派驻一个医疗救助小组.用样本估计总体,把频率作为概率,若从乙地区随机抽取3个村子,用表示派驻的医疗小组数,试写出的分布列并求的期望.
(本小题满分12分)已知函数的最大值是2,且. (Ⅰ)求的值; (Ⅱ)已知锐角△的内角的对边分别为,若,,.求△的面积.
在平面直角坐标系中,点A(-3,0),B(3,0),动点P满足 (1)若点P的轨迹为曲线C,求此曲线的方程; (2)若点Q在直线l1:x+y+3=0上,直线l2经过点Q且与曲线C只有一个公共点M,求的最小值. (3)动圆的半径为,圆心在在直线上,若圆上存在点,使得,求圆心的纵坐标的取值范围.