如图,从椭圆 上一点向轴作垂线,恰好通过椭圆的左焦点,且它的长轴端点及短轴端点的连线平行于,(1)求椭圆的离心率;(2)设是椭圆上任意一点,是右焦点,求的取值范围;(3)设是椭圆上一点,当时,延长与椭圆交于另一点,若的面积为,求此时的椭圆方程。
某日用品按行业质量标准分成五个等级,等级系数X依次为1.2.3.4.5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:
(1)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a、b、c的值; (2)在(1)的条件下,将等级系数为4的3件日用品记为x1,x2,x3,等级系数为5的2件日用品记为y1,y2,现从这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率.
已知命题,若是的充分不必要条件,求实数的取值范围.
(3)若正数满足,求的最小值。
(2)(2011年山西六校模考)以直角坐标系的原点为极点,轴的正半轴为极轴,已知点的直角坐标为,点的极坐标为,若直线过点,且倾斜角为,圆以为圆心、为半径。 ①求直线的参数方程和圆的极坐标方程;②试判定直线和圆的位置关系。
三题中任选两题作答 (1)(2011年江苏高考)已知矩阵,向量,求向量,使得