如图,在中,是上的高,沿把折起,使.(Ⅰ)证明:平面ADB ⊥平面BDC;(Ⅱ)设E为BC的中点,求AE与DB所成角的余弦值.
.(本小题满分12分)已知函数是定义在实数集R上的奇函数,当>0时,(1)已知函数的解析式;(2)若函数在区间上是单调减函数,求a的取值范围;(3)试证明对.
(本小题满分12分)某造纸厂拟建一座平面图形为矩形且面积为162平方米的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/米,中间两道隔墙建造单价为248元/米,池底建造单价为80元/米2,水池所有墙的厚度忽略不计.(1)试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;(2)若由于地形限制,该池的长和宽都不能超过16米,试设计污水池的长和宽,使总造价最低.
(本小题满分12分)如图,已知三棱锥P=ABC中,PA⊥PC,D为AB的中点,M为PB的中点,且AB=2PD.(1)求证:DM//面PAC;(2)找出三棱锥P—ABC中一组面与面垂直的位置关系,并给出证明(只需找到一组即可).
(本小题满分12分)已知是公差为正数的等差数列,首项,前n项和为Sn,数列是等比数列,首项(1)求的通项公式.(2)令的前n项和Tn.
.(本小题满分12分)已知函数(1)求函数的最小正周期及单调递增区间;(2)△ABC内角A、B、C的对边长分别为a、b、c,若