如图,在中,是上的高,沿把折起,使.(Ⅰ)证明:平面ADB ⊥平面BDC;(Ⅱ)设E为BC的中点,求AE与DB所成角的余弦值.
已知向量a=3e1-2e2,b=4e1+e2,其中e1=(1,0),e2=(0,1),求: (1)a·b,|a+b|;(2)a与b的夹角的余弦值.
已知函数定义在上,对任意的,,且. (1)求,并证明:; (2)若单调,且.设向量,对任意,恒成立,求实数的取值范围.
设各项均为正数的数列的前项和为,满足,且恰为等比数列的前三项. (1)证明:数列为等差数列;(2)求数列的前项和.
设函数,且有. (1)求证:,且; (2)求证:函数在区间内有两个不同的零点.
设函数(其中),区间. (1)求区间的长度(注:区间的长度定义为); (2)把区间的长度记作数列,令,证明:.