某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x (单位:元/千克)满足关系式y=+10(x-6)2,(其中3<x<6,为常数,)已知销售价格为5元/千克时,每日可售出该商品11千克。(I)求的值;(II)若该商品的成品为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大。
中内角,,的对边分别为,,,向量,,且.(1)求锐角的大小;(2)如果,求的面积的最大值.
已知椭圆C的方程是,点A,B分别是椭圆的长轴的左、右端点,左焦点坐标为,且过点.(1)求椭圆C的方程;(2)已知F是椭圆C的右焦点,以AF为直径的圆记为圆M,试问:过P点能否引圆M的切线,若能,求出这条切线与x轴及圆M的弦PF所对的劣弧围成的图形的面积;若不能,说明理由.
(本小题满分12分)如图,内接于圆O,AB是圆O的直径,,,,四边形DCBE为平行四边形,平面ABC.(1)证明:平面平面ADE;(2)在CD上是否存在一点M,使得平面ADE?证明你的结论.
已知抛物线焦点为F,抛物线上横坐标为的点到抛物线顶点的距离与其到准线的距离相等.(1)求抛物线的方程;(2)设过点的直线与抛物线交于A,B两点,若以AB为直径的圆过点F,求直线的方程.
如图,四棱锥中,底面ABCD为菱形,且,.(1)求证:;(2)若,求点C到平面PBD的距离.