已知椭圆C的方程是,点A,B分别是椭圆的长轴的左、右端点,左焦点坐标为,且过点.(1)求椭圆C的方程;(2)已知F是椭圆C的右焦点,以AF为直径的圆记为圆M,试问:过P点能否引圆M的切线,若能,求出这条切线与x轴及圆M的弦PF所对的劣弧围成的图形的面积;若不能,说明理由.
已知函数, 数列满足. (1)求数列的通项公式; (2)令,若对一切成立,求最小正整数m.
如图,已知正方体的棱长为2,E、F分别是、的中点,过、E、F作平面交于G. (l)求证:EG∥; (2)求二面角的余弦值; (3)求正方体被平面所截得的几何体的体积.
下图是某市3月1日至14日空气质量指数趋势图,空气质量指数小于1 00表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1曰至3月1 3日中某一天到达该市,并停留2天. (l)求此人到达当日空气重度污染的概率; (2)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望。
已知函数, (l)求函数的最小正周期; (2)当时,求函数f(x)的单调区间。
已知函数,其中. (1) 当时,求曲线在点处的切线方程; (2) 求函数的单调区间及在上的最大值.