已知椭圆C的方程是,点A,B分别是椭圆的长轴的左、右端点,左焦点坐标为,且过点.(1)求椭圆C的方程;(2)已知F是椭圆C的右焦点,以AF为直径的圆记为圆M,试问:过P点能否引圆M的切线,若能,求出这条切线与x轴及圆M的弦PF所对的劣弧围成的图形的面积;若不能,说明理由.
设a,b,c>0,证明:≥a+b+c.
已知梯形ABCD中,AB=DC=AD,AC和BD是它的对角线.用三段论证明:AC平分∠BCD,BD平分∠CBA.
把空间平行六面体与平面上的平行四边形类比,试由“平行四边形对边相等”得出平行六面体的相关性质.
已知函数f(x)=(x∈R), (1)判定函数f(x)的奇偶性; (2)判定函数f(x)在R上的单调性,并证明.
如图1,若射线OM,ON上分别存在点M1,M2与点N1,N2,则=·;如图2,若不在同一平面内的射线OP,OQ和OR上分别存在点P1,P2,点Q1,Q2和点R1,R2,则类似的结论是什么?这个结论正确吗?说明理由.