(本小题满分12分.其中(Ⅰ)小问6分,(Ⅱ)小问6分) 如图,已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD⊥底面ABCD,E、F分别为棱BC、AD的中点. (Ⅰ)若PD=1,求异面直线PB和DE所成角的余弦值; (Ⅱ)若二面角P-BF-C的余弦值为,求四棱锥P-ABCD的体积
求过点P(3,0)且与圆x2+6x+y2-91=0相内切的动圆圆心的轨迹方程.
椭圆上一点P(2,1)到两焦点F1、F2的距离之和是焦距的两倍,求椭圆的标准方程.
“神舟”五号宇宙飞船的运行轨道是以地心为一个焦点的椭圆.设地球半径为R,若其近地点,远地点离地面的距离大约分别是R,R,求“神舟”五号宇宙飞船运行的轨道方程.
已知点P为圆C:(x+1)2+y2=9上一点,A(1,0)为圆C内一点,线段AP的中垂线交半径CP于点M,求点M的轨迹方程.
如图,某隧道设计为双向四车道,车道总宽22米,要求通过车辆限高4.5米,隧道全长2.5千米,隧道的拱线近似地看成半个椭圆形状. (1)若最大拱高h为6米,则隧道设计的拱宽l是多少? (2)若最大拱高h不小于6米,则应如何设计拱高h和拱宽l,才能使半个椭圆形隧道的土方工程量最小? (半个椭圆的面积公式为S=lh,柱体体积为:底面积乘以高.本题结果均精确到0.1米)