已知函数在[1,+∞)上为增函数,且,(1)求的值;(2)若在[1,+∞)上为单调函数,求实数的取值范围;(3)若在上至少存在一个,使得成立,求实数的取值范围.
(本小题满分12分)如图:直角梯形中,,分别为边和上的点,且,.将四边形沿折起成如图2的位置,使.(Ⅰ)求证:平面;(Ⅱ)求三棱锥的体积;(Ⅲ)求面与面所成锐二面角的余弦值.
(本小题满分10分)在海岛上有一座海拔1km的山峰,山顶设有一个观察站.有一艘轮船按一固定方向做匀速直线航行,上午11:00时,测得此船在岛北偏东、俯角为的处,到11:10时,又测得该船在岛北偏西、俯角为的处.(1) 求船的航行速度;(2) 求船从到行驶过程中与观察站的最短距离.
(本小题满分12分)已知函数.(Ⅰ)若,求曲线在处切线的斜率;(Ⅱ)求的单调区间;(Ⅲ)设,若对任意,均存在,使得,求的取值范围.
(本小题满分12分)在直三棱柱中, AC=4,CB=2,AA1=2,E、F分别是的中点。(1)证明:平面平面;(2)证明:平面ABE;(3)设P是BE的中点,求三棱锥的体积。
已知椭圆:()的离心率,左、右焦点分别为、,点满足:在线段的中垂线上.(1)求椭圆的方程;(2)若斜率为()的直线与轴、椭圆顺次相交于点、、,且,求的取值范围.