已知函数在[1,+∞)上为增函数,且,(1)求的值;(2)若在[1,+∞)上为单调函数,求实数的取值范围;(3)若在上至少存在一个,使得成立,求实数的取值范围.
正三棱锥的四个顶点都在半径为的球面上,其中底面的三个顶点在该球的一个大圆上,球心为,是线段的中点,过与垂直的平面分别截三棱锥和球所得平面图形的面积比为
设是函数的图象上两点,且,已知点的横坐标为。 (1)求证:点的纵坐标是定值; (2)定义,其中且, ①求的值; ②设时,,若对于任意,不等式恒成立,试求实数的取值。
已知函数。 (1)若,求函数在上的最小值; (2)若函数在上存在单调递增区间,试求实数的取值范围。
已知,命题:对任意,不等式恒成立;命题:存在,使不等式成立. (1)若为真命题,求的取值范围; (2)若为假,为真,求的取值范围。
已知数列的相邻两项、是关于的方程的两根,且。 (1)求证:数列是等比数列; (2)求数列的前项的和及数列的通项公式。