(共12分)设集合.(1)若,求;(2)若,求实数a的范围.
(本小题满分10分)设.(1)若数列的各项均为1,求证:;(2)若对任意大于等于2的正整数,都有恒成立,试证明数列是等差数列.
(本小题满分10分)如图,已知四棱锥的底面是菱形,对角线交于点,,,,底面,设点满足.(1)当时,求直线与平面所成角的正弦值;(2)若二面角的大小为,求的值.
(选修4-5:不等式选讲)已知为正实数,求证:,并求等号成立的条件.
(选修4—4:坐标系与参数方程)在极坐标系中,曲线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为(为参数),试判断直线与曲线的位置关系,并说明理由.
(选修4—2:矩阵与变换)若矩阵属于特征值3的一个特征向量为,求矩阵的逆矩阵.