如图所示,小明设计了某个产品的包装盒,他少设计了其中一部分,请你把它补上,使其成为两边均有盖的正方体盒子. (1)你有__________种弥补的办法.(2)任意画出一种成功的设计图.
某单位在2012春节联欢会上举行一个抽奖活动:甲箱中装有3个红球,2个黑球,乙箱中装有2个红球4个黑球,参加活动者从这两个箱子中分别摸出1个球,如果摸到的都是红球则获奖.(Ⅰ)求每个活动参加者获奖的概率;(Ⅱ)某办公室共有5人,每人抽奖1次,求这5人中至少有3人获奖的概率.
如图,正三棱柱ABC—A1B1C1的底面边长为a,点M在边 BC上,△AMC1是以点M为直角顶点的等腰直角三角形。(Ⅰ)求证点M为边BC的中点;(Ⅱ)求点C到平面AMC1的距离;(Ⅲ)求二面角M—AC1—C的大小。
已知函数(I)求函数的最小值和最小正周期;(II)设△的内角对边分别为,且,若与共线,求的值.
已知函数.()(1)若在区间上单调递增,求实数的取值范围;(2)若在区间上,函数的图象恒在曲线下方,求的取值范围.
已知递增等差数列满足:,且成等比数列.(1)求数列的通项公式;(2)若不等式对任意恒成立,试猜想出实数的最小值,并证明.