已知函数.()(1)若在区间上单调递增,求实数的取值范围;(2)若在区间上,函数的图象恒在曲线下方,求的取值范围.
在极坐标系中,直线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,曲线的参数方程为(为参数),求直线与曲线的交点P的直角坐标.
已知矩阵A=,若矩阵A属于特征值6的一个特征向量为α1=,属于特征值1的一个特征向量为α2=.求矩阵A,并写出A的逆矩阵.
已知数列为等差数列,,的前和为,数列为等比数列,且对任意的恒成立.(Ⅰ)求数列、的通项公式;(Ⅱ)是否存在非零整数,使不等式对一切都成立?若存在,求出的值;若不存在,说明理由.(Ⅲ)各项均为正整数的无穷等差数列,满足,且存在正整数k,使成等比数列,若数列的公差为d,求d的所有可能取值之和.
设函数.(Ⅰ)若,函数在的值域为,求函数的零点;(Ⅱ)若,,.(1)对任意的,恒成立, 求实数的最小值;(2)令,若存在使得,求实数的取值范围.
如图,在平面直角坐标系xOy中,已知椭圆:的离心率为,且右焦点F到左准线l的距离为.(Ⅰ)求椭圆的标准方程;(Ⅱ)(1)设椭圆上的任一点,从原点向圆引两条切线,设两条切线的斜率分别为,当为定值时求的值;(2)在(1)的条件下,当两条切线分别交椭圆于时,试探究是否为定值,若是,求出其值;若不是,请说明理由.