小康家里养了8只猪,质量的千克数分别为:104,98.5,96,91.8,102.5,107,103,95.5,按下列要求计算:⑴观察这8个数,估计这8只猪的平均质量约为 千克;⑵计算每只猪与你估计质量的偏差(实际质量-估计质量)分别为:⑶计算偏差的平均数(精确到十分位)所以这8只猪的平均质量约为 。
先化简,再求值. (1)其中.(2)已知x+3y="3" ,xy=11,求代数式3(x-3y)-(xy+5)+2(3y-2x)的值.
已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB.OC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.(1)求A、B、C三点的坐标;(2)求此抛物线的表达式;(3)连接AC、BC,若点E是线段AB上的一个动点(与点A.点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;(4)在(3)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.
△ABC是一张等腰直角三角形纸板,∠C=Rt∠,AC=BC=2,(1)要在这张纸板中剪出一个尽可能大的正方形,有甲、乙两种剪法(如图1),比较甲.乙两种剪法,哪种剪法所得的正方形面积大?请说明理由。(2)图1中甲种剪法称为第1次剪取,记所得正方形面积为;按照甲种剪法,在余下的△ADE和△BDF中,分别剪取正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为(如图2),则;再在余下的四个三角形中,用同样方法分别剪取正方形,得到四个相同的正方形,称为第3次剪取,并记这四个正方形面积和为,继续操作下去……,则第10次剪取时,;(3)求第10次剪取后,余下的所有小三角形的面积之和。
如图是一种新型滑梯的示意图,其中线段PA是高度为6米的平台,滑道AB是函数的图象的一部分,滑道BCD是二次函数图象的一部分,两滑道的连接点B为抛物线的顶点,且点B到地面的距离为2米,当甲同学滑到点C时,距地面的距离为1米,距点B的水平距离CE也为1米.(1)试求滑道BCD所在抛物线的解析式;(2)试求甲同学从点A滑到地面上点D时,所经过的水平距离.
如图,AB是⊙O的直径,点P是⊙O上的动点(P与A,B不重合),连结AP,PB,过点O分别作OE⊥AP于E,OF⊥BP于F.(1)若AB=12,当点P在⊙O上运动时,线段EF的长会不会改变.若会改变,请说明理由;若不会改变,请求出EF的长;(2)若AP=BP,求证四边形OEPF是正方形.