(本题满分14分) 设{an}是由正数组成的等差数列,Sn是其前n项和(1)若,求的值;(2)若互不相等正整数p,q,m,使得p+q=2m,证明:不等式成立;(3)是否存在常数k和等差数列{an},使恒成立(n∈N*),若存在,试求出常数k和数列{an}的通项公式;若不存在,请说明理由。
(本小题满分12分)已知数列的前n项之和为. (1)求数列的通项公式; (2)设,求数列的前n项和Tn; (3)求使不等式对一切n∈N*均成立的最大实教p.
(本小题满分12分)如图,已知平面,平面,△为等边三角形,,为的中点. (1)求证:平面; (2)求证:平面平面; (3)求直线和平面所成角的正弦值.
一个盒子装有六张卡片,上面分别写着如下六个定义域为的函数:,,,,,. (Ⅰ)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率; (Ⅱ)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.
在△ABC中,角A、B、C的对边分别为a、b、c,且. (Ⅰ)求角A的大小; (Ⅱ)若,求△ABC的面积.
在平面直角坐标系中,为坐标原点,已知两点、,若动点满足且点的轨迹与抛物线交于、两点.(Ⅰ)求证:;(Ⅱ)在轴上是否存在一点,使得过点的直线交抛物线于于、两点,并以线段为直径的圆都过原点。若存在,请求出的值及圆心的轨迹方程;若不存在,请说明理由.