(本小题满分12分)已知数列的前n项之和为. (1)求数列的通项公式; (2)设,求数列的前n项和Tn; (3)求使不等式对一切n∈N*均成立的最大实教p.
椭圆C:长轴为8离心率 (1)求椭圆C的标准方程; (2)过椭圆C内一点M(2,1)引一条弦,使弦被点M平分, 求这条弦所在的直线方程。
一个圆锥高h为,侧面展开图是个半圆,求: (1)其母线l与底面半径r之比; (2)锥角; (3)圆锥的表面积
(本小题满分14分)
_
.如图,ABCD是梯形,AB//CD,,PA⊥面ABCD,
(Ⅱ)求直线AC与PB所成角的余弦值;
(本小题满分14分)已知在平面直角坐标系xoy中的一个椭圆,它的中心在原 点,左焦 (1)求该椭圆的标准方程; (2)若P是椭圆上的动点,求线段PA中点M的轨迹方程; (3)过原点O的直线交椭圆于点B、C,求△ABC面积的最大值。
(本小题满分13分)已知正方体ABCD-A1B1C1D1, O是底ABCD对角线的交点. 求证:(1)//面A1B1D1; (2)A1C⊥面AB1D1; (3)求。