(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分. )已知是首项为19,公差为-2的等差数列,为的前项和.(Ⅰ)求通项及;(Ⅱ)设是首项为1,公比为3的等比数列,求数列的通项公式及其前项和.
已知,,且. (1)将表示为的函数,并求的单调增区间; (2)已知分别为的三个内角对应的边长,若,且,,求的面积.
已知四棱锥P-ABCD,底面ABCD是,边长为的菱形,又,且PD=CD,点M、N分别是棱AD、PC的中点. (1)证明:DN//平面PMB; (2)证明:平面PMB平面PAD.
已知一个矩形由三个相同的小矩形拼凑而成(如图所示),用三种不同颜色给3个小矩形涂色,每个小矩形只涂一种颜色,求: (1)3个矩形都涂同一颜色的概率; (2)3个小矩形颜色都不同的概率.
根据我国发布的《环境空气质量指数技术规定》 (试行),共分为六级:为优,为良,为轻度污染,为中度污染,,均为重度污染,及以上为严重污染.某市2013年11月份天的的频率分布直方图如图所示: (1)该市11月份环境空气质量优或良的共有多少天? (2)若采用分层抽样方法从天中抽取天进行市民户外晨练人数调查,则中度污染被抽到的天数共有多少天? (3)空气质量指数低于时市民适宜户外晨练,若市民王先生决定某天早晨进行户外晨练,则他当天适宜户外晨练的概率是多少?
已知. (1)若,求曲线在点处的切线方程; (2)若求函数的单调区间.