在平面直角坐标系中,设锐角的始边与轴的非负半轴重合,终边与单位圆交于点,将射线绕坐标原点按逆时针方向旋转后与单位圆交于点. 记.(1)求函数的值域;(2)设的角所对的边分别为,若,且,,求.
(本小题满分12分)如图,直三棱柱中,D、E分别是AB、的中点. (Ⅰ)证明:平面; (Ⅱ)设,,求四棱锥的体积.
设函数的最小值为a. (Ⅰ)求a; (Ⅱ)已知两个正数m,n满足,求的最小值.
如图所示,已知与⊙相切,为切点,过点的割线交圆于两点,弦,相交于点,为上一点,且. (Ⅰ)求证:; (Ⅱ)若,求的长.
(本小题满分12分)已知函数. (Ⅰ)如果函数在上单调递减,求的取值范围; (Ⅱ)当时,讨论函数零点的个数.
(本小题满分12分)有20名学生参加某次考试,成绩(单位:分)的频率分布直方图如图所示: (Ⅰ)求频率分布直方图中的值; (Ⅱ)分别求出成绩落在中的学生人数; (Ⅲ)从成绩在的学生中任选2人,求所选学生的成绩都落在中的概率.