(满分12分)已知函数是定义在R上的奇函数.(1)求的值;(2)判断在R上的单调性并用定义证明; (3)若对恒成立,求实数k的取值范围.
设f(x)=-x3+x2+2ax.(1)若f(x)在(,+∞)上存在单调递增区间,求a的取值范围.(2)当0<a<2时,f(x)在[1,4]上的最小值为-,求f(x)在该区间上的最大值.
已知函数f(x)=lnx+ax+1,a∈R.(1)求f(x)在x=1处的切线方程.(2)若不等式f(x)≤0恒成立,求a的取值范围.
设f(x)=,其中a为正实数.(1)当a=时,求f(x)的极值点.(2)若f(x)为[,]上的单调函数,求a的取值范围.
已知函数f(x)=x3-x2+x+b,其中a,b∈R.(1)若曲线y=f(x)在点P(2,f(2))处的切线方程为y=5x-4,求函数f(x)的解析式.(2)当a>0时,讨论函数f(x)的单调性.
已知函数f(x)=ax3+3x2-6ax-11,g(x)=3x2+6x+12和直线m:y=kx+9,且f′(-1)=0.(1)求a的值.(2)是否存在k的值,使直线m既是曲线y=f(x)的切线,又是曲线y=g(x)的切线?如果存在,求出k的值;如果不存在,说明理由.