设f(x)=,其中a为正实数.(1)当a=时,求f(x)的极值点.(2)若f(x)为[,]上的单调函数,求a的取值范围.
设等差数列的前项和为,,. (1)求数列的通项公式; (2)设数列的前项和为,求证:.
如图,在平面直角坐标系中,椭圆过点,离心率,为椭圆的左右焦点. (1)求椭圆的标准方程; (2)设圆的圆心在轴上方,且圆经过椭圆两焦点.点为椭圆上的一动点,与圆相切于点. ①当时,求直线的方程; ②当取得最大值为时,求圆方程.
如图,在正方体的棱长为,为棱上的一动点. (1)若为棱的中点, ①求四棱锥的体积 ②求证:面面 (2)若面,求证:为棱的中点.
在平面直角坐标系中,已知圆经过,两点,且圆心在直线上. (1)求圆的标准方程; (2)过圆内一点作两条相互垂直的弦,当时,求四边形的面积. (3)设直线与圆相交于两点,,且的面积为,求直线的方程.
已知的顶点,边上的高所在直线的方程为,边上中线所在直线的方程为. 求:(1)点的坐标; (2)直线的方程.