如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝.再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米).(2)若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出灯笼的三视图(作图时,不需考虑骨架等因素).
(本小题满分10分)选修4-5:不等式选修 在,的前提下,求a的一个值,是它成为的一个充分但不必要条件。
(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C的极坐标方程是.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:(是参数). (1)将曲线C的极坐标方程和直线参数方程转化为普通方程; (2)若直线l与曲线C相交于A、B两点,且,试求实数值.
(本小题满分10分)选修4-1:几何证明讲 如图,AB是⊙O的直径,弦BD、CA的延长线相交于点E,EF垂直BA的延长线于点F. 求证:(1); (2)AB2=BE•BD-AE•AC.
(本小题满分12分) 若函数的定义域为,其中a、b为任 意正实数,且a<b。 (1)当A=时,研究的单调性(不必证明); (2)写出的单调区间(不必证明),并求函数的最小值、最大值; (3)若其中k是正整数,对一切正整数k不等式都有解,求m的取值范围。
(本小题满分12分) 已知椭圆左、右焦点分别为F1、F2,点,点F2在线段PF1的中垂线上。 (1)求椭圆C的方程; (2)设直线与椭圆C交于M、N两点,直线F2M与F2N的倾斜角互补,求证:直线过定点,并求该定点的坐标。