如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝.再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米).(2)若要制作一个如图放置的、底面半径为0.3米的灯笼,请作出灯笼的三视图(作图时,不需考虑骨架等因素).
(本小题满分12分)设向量,点为动点,已知。 (1)求点的轨迹方程; (2)设点的轨迹与轴负半轴交于点,过点的直线交点的轨迹于、两点,试推断的面积是否存在最大值?若存在,求其最大值;若不存在,请说明理由。
(本小题满分12分)如图:在矩形内,两个圆、分别与矩形两边相切,且两圆互相外切。若矩形的长和宽分别为和,试把两个圆的面积之和表示为圆半径的函数关系式,并求的最大值和最小值。
(本小题满分12分)在调查的名上网的学生中有名学生睡眠不好,名不上网的学生中有名学生睡眠不好,利用独立性检验的方法来判断是否能以的把握认为“上网和睡眠是否有关系”. 附:; 参考数据
,.
(本小题满分12分)已知函数,求的值域。
(本小题满分14分) 已知曲线在点处的切线斜率为 (1)求的极值; (2)设在(-∞,1)上是增函数,求实数的取值范围; (3)若数列满足,求证:对一切