某厂家拟在2010年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)万件与促销费用万元()满足(为常数),如果不搞促销活动,则该产品的年销量只能是1万件。已知2010年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品的年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金)。(1)将2010年该产品的利润y万元表示为年促销费用m万元的函数;(2)该厂家2010年的促销费用投入多少万元时,厂家的利润最大?
(本小题满分14分) 已知上是减函数,且. (Ⅰ)求的值,并求出和的取值范围; (Ⅱ)求证; (Ⅲ)求的取值范围,并写出当取最小值时的的解析式.
(本小题满分14分) 已知是等比数列,,;是等差数列,,. (Ⅰ) 求数列的前项和的公式; (Ⅱ) 求数列的通项公式;,其中,试比较与的大小,并证明你的结论.
(本小题满分14分) 已知圆方程为:. (Ⅰ)直线过点,且与圆交于、两点,若,求直线的方程; (Ⅱ)过圆上一动点作平行于轴的直线,设与轴的交点为,若向量,求动点的轨迹方程,并说明此轨迹是什么曲线.
(本小题满分14分) 如图:四棱锥P—ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动. (Ⅰ)点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由; (Ⅱ)证明:无论点E在BC边的何处,都有PE⊥AF; (Ⅲ)当BE等于何值时,PA与平面PDE所成角的大小为45°
(本小题满分12分) 某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示. (Ⅰ)估计这次测试数学成绩的平均分; (Ⅱ)假设在[90,100]段的学生的数学成绩都不相同,且都在94分以上,现用简单随机抽样的方法,从95,96,97,98,99,100这6个数中任取2个数,求这两个数恰好是在[90,100]段的两个学生的数学成绩的概率.