(本小题满分14分)已知等差数列满足,的前n项和为。(1)求和;(2)令 ,求数列的前n项和
已知椭圆:经过点,其离心率.(1)求椭圆的方程;(2)过坐标原点作不与坐标轴重合的直线交椭圆于两点,过作轴的垂线,垂足为,连接并延长交椭圆于点,试判断随着的转动,直线与的斜率的乘积是否为定值?说明理由.
已知函数,函数的导函数,且,其中为自然对数的底数.(1)求的极值;(2)若,使得不等式成立,试求实数的取值范围;
如图,在四棱锥E﹣ABCD中,矩形ABCD所在的平面与平面AEB垂直,且∠BAE=120°,AE=AB=4,AD=2,F,G,H分别为BE,AE,BC的中点(1)求证:DE∥平面FGH;(2)若点P在直线GF上,=λ,且二面角D﹣BP﹣A的大小为,求λ的值.
数列的前项和记为,,.(1)求证是等比数列,并求的通项公式;(2)等差数列的各项为正,其前项和为,且,又 成等比数列,求.
已知△ABC的内角A,B,C所对的边分别为a,b,c,且a=2,.(1)若b=4,求sin A的值;(2)若△ABC的面积S△ABC=4,求b,c的值.