如图所示,四棱锥P—ABCD的底面ABCD是半径为R的圆的内接四边形,其中BD是圆的直径,。(1)求线段PD的长;(2)若,求三棱锥P—ABC的体积。
对于函数若存在,使得成立,则称为的不动点.已知(1)当时,求函数的不动点;(2)若对任意实数,函数恒有两个相异的不动点,求的取值范围;(3)在(2)的条件下,若图象上、两点的横坐标是函数的不动点,且、两点关于直线对称,求的最小值.
在平面直角坐标系中,已知圆和圆.(1)若直线过点,且被圆截得的弦长为,求直线的方程;(2)设为平面上的点,满足:存在过点的无穷多对互相垂直的直线和,它们分别与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点的坐标.
在三棱锥中,是边长为2的正三角形,平面平面,,分别为的中点.(1)证明:;(2)求锐二面角的余弦值;
已知函数(1)求的单调递增区间;(2)在中,内角A,B,C的对边分别为,已知,成等差数列,且,求边的值.
相关部门对跳水运动员进行达标定级考核,动作自选,并规定完成动作成绩在八分及以上的定为达标,成绩在九分及以上的定为一级运动员. 已知参加此次考核的共有56名运动员.(1)考核结束后,从参加考核的运动员中随机抽取了8人,发现这8人中有2人没有达标,有3人为一级运动员,据此请估计此次考核的达标率及被定为一级运动员的人数;(2)经过考核,决定从其中的A、B、C、D、E五名一级运动员中任选2名参加跳水比赛(这五位运动员每位被选中的可能性相同). 写出所有可能情况,并求运动员E被选中的概率.