如图,平面直角坐标系中,⊙与轴相切于点,与轴相交于点两点,连结。(1)求证;(2)若点的坐标为,直接写出点的坐标(3)在(2)的条件下,过两点作⊙与轴的正半轴交于点,与的延长线交于点,当⊙的大小变化时,给出下列两个结论:的值不变;②的值不变;其中有且只有一个结论是正确的,请你判断哪一个结论正确,证明正确的结论并求出其值。
在ABCD中,E、F分别是AB、CD的中点,连接AF、CE.(1)求证:△BEC≌△DFA;(2)连接AC,当CA=CB时,判断四边形AECF是什么特殊四边形?并证明你的结论.
为增强环保意识,某社区计划开展一次“减碳环保,减少用车时间”的宣传活动,对部分家庭五月份的平均每天用车时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)本次抽样调查了多少个家庭?(2)将图①中的条形图补充完整,直接写出用车时间的中位数落在哪个时间段内;(3)求用车时间在1~1.5小时的部分对应的扇形圆心角的度数;(4)若该社区有车家庭有1600个,请你估计该社区用车时间不超过1.5小时的约有多少个家庭?
(1)计算: (2)化简分式,并从中选一个你认为适合的整数代人求值.
如图,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,∠DCB=30°.点E、F同时从B点出发,沿射线BC向右匀速移动.已知F点移动速度是E点移动速度的2倍,以EF为一边在CB的上方作等边△EFG.设E点移动距离为x(x>0).⑴△EFG的边长是____(用含有x的代数式表示),当x=2时,点G的位置在_______;⑵若△EFG与梯形ABCD重叠部分面积是y,求①当0<x≤2时,y与x之间的函数关系式;②当2<x≤6时,y与x之间的函数关系式;⑶探求⑵中得到的函数y在x取何值时,存在最大值,并求出最大值.
如图所示,已知A点的坐标为(0,3),⊙A的半径为1,点B在轴上.①若点B的坐标为(4,0),⊙B的半径为3,试判断⊙A与⊙B的位置关系;②能否在轴的正半轴上确定一点B,使⊙B与y轴相切,并且与⊙A相切?请说明理由.