(本小题满分13分)设函数的定义域为R,当时,,且对任意的实数,,有(1)求; (2)试判断函数在上是否存在最大值,若存在,求出该最大值,若不存在说明理由;(3)设数列各项都是正数,且满足,又设,,试比较与 的大小.
矩阵与变换:已知a,b∈R,若矩阵所对应的变换把直线l:2x﹣y=3变换为自身,求M﹣1.
已知矩阵A=,求点M(﹣1,1)在矩阵A﹣1对应的变换作用下得到的点M′坐标.
已知矩阵A=(k≠0)的一个特征向量为α=,A的逆矩阵A﹣1对应的变换将点(3,1)变为点(1,1).求实数a,k的值.
已知矩阵,若矩阵A属于特征值6的一个特征向量为,属于特征值1的一个特征向量. (Ⅰ)求矩阵A的逆矩阵; (Ⅱ)计算A3的值.
已知矩阵A=(c,d为实数).若矩阵A属于特征值2,3的一个特征向量分别为,,求矩阵A的逆矩阵A﹣1.