(本小题满分12分)已知直线与函数的图象相切于点(1,0),且与函数的图象也相切。(1)求直线的方程及的值;(2)若,求函数的最大值.
如图,在平面直角坐标系 xOy 中,椭圆C过点 ( 3 , 1 2 ) ,焦点 F 1 ( - 3 , 0 ) , F 2 ( 3 , 0 ) ,圆O的直径为 F 1 F 2 .
(1)求椭圆C及圆O的方程;
(2)设直线 l 与圆O相切于第一象限内的点P.
①若直线 l 与椭圆C有且只有一个公共点,求点P的坐标;
②直线 l 与椭圆C交于A、B两点.若 ΔOAB 的面积为 2 6 7 ,求直线 l 的方程.
某农场有一块农田,如图所示,它的边界由圆 O 的一段圆弧 MPN ( P 为此圆弧的中点)和线段 MN 构成,已知圆 O 的半径为40米,点 P 到 MN 的距离为50米,先规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形 ABCD .大棚Ⅱ内的地块形状为 ΔCDP 要求 AB 均在线段 MN 上, C , D 均在圆弧上,设 OC 与 MN 所成的角为 θ
(1)用 θ 分别表示矩形 A B C D 和 Δ C D P 的面积,并确定 sin θ 的取值范围
(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为 4 : 3 .求当 θ 为何值时,能使甲、乙两种蔬菜的年总产值最大.
已知 α , β 为锐角, tan α = 4 3 , cos ( α + β ) = - 5 5 。
(1)求 cos 2 α 的值。
(2)求 tan ( α - β ) 的值。
在平行四边形 ABCD - A 1 B 1 C 1 D 1 中, A A 1 = AB , A B 1 ⊥ B 1 C 1
求证:
(1) AB / / 平面 A 1 B 1 C
(2)平面 AB B 1 A 1 ⊥ 平面 A 1 BC
设数列满足 | a n ﹣ a n + 1 2 | ≤ 1 , n ∈ N * .
(1)求证: | a n | ≥ 2 n ﹣ 1 ( | a 1 | ﹣ 2 )( n ∈ N * )
(2)若 | a n | ≤ ( 3 2 ) n , n ∈ N * , 证明: | a n | ≤ 2 , n ∈ N * .